If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-4.9t-29.4=0
a = 4.9; b = -4.9; c = -29.4;
Δ = b2-4ac
Δ = -4.92-4·4.9·(-29.4)
Δ = 600.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4.9)-\sqrt{600.25}}{2*4.9}=\frac{4.9-\sqrt{600.25}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4.9)+\sqrt{600.25}}{2*4.9}=\frac{4.9+\sqrt{600.25}}{9.8} $
| 4.9t²-4.9t-29.4=0 | | 18x+128=110 | | -17x+47=30 | | -13x+22=9 | | 4y+8=5/5y+8=6 | | 4y+8=5 | | 40➗2x=5 | | 3(x-8)-4x-(x+7)×5=11 | | P(x)=3x3-3x2-4x+51 | | 5.5x+21=11x-34 | | 4b2+27b+35=0 | | 3t-4t2=0 | | 50+10x0+5+2= | | 24-2y=33 | | 36x+16=19x-1 | | 2x6–4+18= | | x²+7x-360=0 | | 9x^2+30+20=0 | | (3^x)(5^x+1)=6^x+2 | | M^4+-2m3+2m2+1=0 | | 7m+25=4 | | 100×5x=200 | | (D2+3D+2)y=0 | | g+6=-13 | | 5x(2)-23x-2=8 | | 0=-4t^2+32t-t | | T=t/2t+6 | | r-5=-11 | | 8+2y-y²=0 | | 4x+97=-25 | | 4w+6w=12w | | X√y=75 |